[A History of Science<br>Volume 2(of 5) by Henry Smith Williams]@TWC D-Link book
A History of Science
Volume 2(of 5)

BOOK II
284/368

And then, by that ratio, I computed the refractions of two rays flowing from opposite parts of the sun's discus, so as to differ 31' in their obliquity of incidence, and found that the emergent rays should have comprehended an angle of 31', as they did, before they were incident.
"But because this computation was founded on the hypothesis of the proportionality of the sines of incidence and refraction, which though by my own experience I could not imagine to be so erroneous as to make that angle but 31', which in reality was 2 degrees 49', yet my curiosity caused me again to make my prism.

And having placed it at my window, as before, I observed that by turning it a little about its axis to and fro, so as to vary its obliquity to the light more than an angle of 4 degrees or 5 degrees, the colors were not thereby sensibly translated from their place on the wall, and consequently by that variation of incidence the quantity of refraction was not sensibly varied.

By this experiment, therefore, as well as by the former computation, it was evident that the difference of the incidence of rays flowing from divers parts of the sun could not make them after decussation diverge at a sensibly greater angle than that at which they before converged; which being, at most, but about 31' or 32', there still remained some other cause to be found out, from whence it could be 2 degrees 49'." All this caused Newton to suspect that the rays, after their trajection through the prism, moved in curved rather than in straight lines, thus tending to be cast upon the wall at different places according to the amount of this curve.

His suspicions were increased, also, by happening to recall that a tennis-ball sometimes describes such a curve when "cut" by a tennis-racket striking the ball obliquely.
"For a circular as well as a progressive motion being communicated to it by the stroke," he says, "its parts on that side where the motions conspire must press and beat the contiguous air more violently than on the other, and there excite a reluctancy and reaction of the air proportionately greater.

And for the same reason, if the rays of light should possibly be globular bodies, and by their oblique passage out of one medium into another acquire a circulating motion, they ought to feel the greater resistance from the ambient ether on that side where the motions conspire, and thence be continually bowed to the other.


<<Back  Index  Next>>

D-Link book Top

TWC mobile books