[Faraday As A Discoverer by John Tyndall]@TWC D-Link book
Faraday As A Discoverer

CHAPTER 3
4/21

At the moment, however, when the circuit was interrupted the needle again moved, and in a direction opposed to that observed on the completion of the circuit.
This result, and others of a similar kind, led him to the conclusion 'that the battery current through the one wire did in reality induce a similar current through the other; but that it continued for an instant only, and partook more of the nature of the electric wave from a common Leyden jar than of the current from a voltaic battery.' The momentary currents thus generated were called induced currents, while the current which generated them was called the inducing current.

It was immediately proved that the current generated at making the circuit was always opposed in direction to its generator, while that developed on the rupture of the circuit coincided in direction with the inducing current.
It appeared as if the current on its first rush through the primary wire sought a purchase in the secondary one, and, by a kind of kick, impelled backward through the latter an electric wave, which subsided as soon as the primary current was fully established.
Faraday, for a time, believed that the secondary wire, though quiescent when the primary current had been once established, was not in its natural condition, its return to that condition being declared by the current observed at breaking the circuit.

He called this hypothetical state of the wire the electro-tonic state: he afterwards abandoned this hypothesis, but seemed to return to it in later life.

The term electro-tonic is also preserved by Professor Du Bois Reymond to express a certain electric condition of the nerves, and Professor Clerk Maxwell has ably defined and illustrated the hypothesis in the Tenth Volume of the 'Transactions of the Cambridge Philosophical Society.' The mere approach of a wire forming a closed curve to a second wire through which a voltaic current flowed was then shown by Faraday to be sufficient to arouse in the neutral wire an induced current, opposed in direction to the inducing current; the withdrawal of the wire also generated a current having the same direction as the inducing current; those currents existed only during the time of approach or withdrawal, and when neither the primary nor the secondary wire was in motion, no matter how close their proximity might be, no induced current was generated.
Faraday has been called a purely inductive philosopher.

A great deal of nonsense is, I fear, uttered in this land of England about induction and deduction.


<<Back  Index  Next>>

D-Link book Top

TWC mobile books