[A Treatise of Human Nature by David Hume]@TWC D-Link book
A Treatise of Human Nature

PART II
37/63

Not only we are incapable of telling, if the case be in any degree doubtful, when such particular figures are equal; when such a line is a right one, and such a surface a plain one; but we can form no idea of that proportion, or of these figures, which is firm and invariable.

Our appeal is still to the weak and fallible judgment, which we make from the appearance of the objects, and correct by a compass or common measure; and if we join the supposition of any farther correction, it is of such-a-one as is either useless or imaginary.

In vain should we have recourse to the common topic, and employ the supposition of a deity, whose omnipotence may enable him to form a perfect geometrical figure, and describe a right line without any curve or inflexion.

As the ultimate standard of these figures is derived from nothing but the senses and imagination, it is absurd to talk of any perfection beyond what these faculties can judge of; since the true perfection of any thing consists in its conformity to its standard.
Now since these ideas are so loose and uncertain, I would fain ask any mathematician what infallible assurance he has, not only of the more intricate, and obscure propositions of his science, but of the most vulgar and obvious principles?
How can he prove to me, for instance, that two right lines cannot have one common segment?
Or that it is impossible to draw more than one right line betwixt any two points?
should he tell me, that these opinions are obviously absurd, and repugnant to our clear ideas; I would answer, that I do not deny, where two right lines incline upon each other with a sensible angle, but it is absurd to imagine them to have a common segment.

But supposing these two lines to approach at the rate of an inch in twenty leagues, I perceive no absurdity in asserting, that upon their contact they become one.


<<Back  Index  Next>>

D-Link book Top

TWC mobile books